This documentation is automatically generated by online-judge-tools/verification-helper
using cd = complex<double>;
using VT = int;
const double PI = acos(-1);
void fft(vector<cd> & a, bool invert) {
int n = a.size();
if (n == 1)
return;
vector<cd> a0(n / 2), a1(n / 2);
for (int i = 0; 2 * i < n; i++) {
a0[i] = a[2*i];
a1[i] = a[2*i+1];
}
fft(a0, invert);
fft(a1, invert);
double ang = 2 * PI / n * (invert ? -1 : 1);
cd w(1), wn(cos(ang), sin(ang));
for (int i = 0; 2 * i < n; i++) {
a[i] = a0[i] + w * a1[i];
a[i + n/2] = a0[i] - w * a1[i];
if (invert) {
a[i] /= 2;
a[i + n/2] /= 2;
}
w *= wn;
}
}
vector<VT> multiply(vector<VT> const& a, vector<VT> const& b) {
vector<cd> fa(a.begin(), a.end()), fb(b.begin(), b.end());
int n = 1;
while (n < (int)(a.size() + b.size()))
n <<= 1;
fa.resize(n);
fb.resize(n);
fft(fa, false);
fft(fb, false);
for (int i = 0; i < n; i++)
fa[i] *= fb[i];
fft(fa, true);
vector<VT> result(n);
for (int i = 0; i < n; i++)
result[i] = round(fa[i].real());
return result;
}
#line 1 "external/fft.cpp"
using cd = complex<double>;
using VT = int;
const double PI = acos(-1);
void fft(vector<cd> & a, bool invert) {
int n = a.size();
if (n == 1)
return;
vector<cd> a0(n / 2), a1(n / 2);
for (int i = 0; 2 * i < n; i++) {
a0[i] = a[2*i];
a1[i] = a[2*i+1];
}
fft(a0, invert);
fft(a1, invert);
double ang = 2 * PI / n * (invert ? -1 : 1);
cd w(1), wn(cos(ang), sin(ang));
for (int i = 0; 2 * i < n; i++) {
a[i] = a0[i] + w * a1[i];
a[i + n/2] = a0[i] - w * a1[i];
if (invert) {
a[i] /= 2;
a[i + n/2] /= 2;
}
w *= wn;
}
}
vector<VT> multiply(vector<VT> const& a, vector<VT> const& b) {
vector<cd> fa(a.begin(), a.end()), fb(b.begin(), b.end());
int n = 1;
while (n < (int)(a.size() + b.size()))
n <<= 1;
fa.resize(n);
fb.resize(n);
fft(fa, false);
fft(fb, false);
for (int i = 0; i < n; i++)
fa[i] *= fb[i];
fft(fa, true);
vector<VT> result(n);
for (int i = 0; i < n; i++)
result[i] = round(fa[i].real());
return result;
}