This documentation is automatically generated by online-judge-tools/verification-helper
#pragma once
#include "template.hpp"
template <typename T = int64_t> struct Fraction {
T n, d;
void reduce() {
T gv = __gcd(abs(n), abs(d));
n /= gv; d /= gv;
if (d < 0) {
n *= -1; d *= -1;
}
}
Fraction(T a, T b) : n(a), d(b) { reduce(); }
Fraction(T x) : n(x), d(1) { reduce(); }
Fraction inv() const { return Fraction(d, n); }
Fraction neg() const { return Fraction(-n, d); }
Fraction mul(Fraction f) const { return Fraction(n * f.n, d * f.d); }
Fraction div(Fraction f) const { return mul(f.inv()); }
Fraction add(Fraction f) const { return Fraction(n * f.d + f.n * d, d * f.d); }
Fraction sub(Fraction f) const { return add(f.neg()); }
bool operator==(const Fraction o) const { return n == o.n && d == o.d; }
bool operator!=(const Fraction o) const { return n != o.n || d != o.d; }
bool operator<(const Fraction o) const { return n * o.d < o.n * d; }
bool operator>(const Fraction o) const { return o < *this; }
bool operator<=(const Fraction o) const { return !(o < *this); }
bool operator>=(const Fraction o) const { return !(*this < o); }
};
ostream& operator<<(ostream &out, const Fraction o) {
out << o.n << " / " << o.d;
return out;
}
#line 2 "template.hpp"
#include <bits/stdc++.h>
#define DEBUG 1
using namespace std;
// Defines
#define fs first
#define sn second
#define pb push_back
#define eb emplace_back
#define mpr make_pair
#define mtp make_tuple
#define all(x) (x).begin(), (x).end()
// Basic type definitions
#if __cplusplus == 201703L // CPP17 only things
template <typename T> using opt_ref = optional<reference_wrapper<T>>; // for some templates
#endif
using ll = long long; using ull = unsigned long long; using ld = long double;
using pii = pair<int, int>; using pll = pair<long long, long long>;
#ifdef __GNUG__
// PBDS order statistic tree
#include <ext/pb_ds/assoc_container.hpp> // Common file
#include <ext/pb_ds/tree_policy.hpp>
using namespace __gnu_pbds;
template <typename T, class comp = less<T>> using os_tree = tree<T, null_type, comp, rb_tree_tag, tree_order_statistics_node_update>;
template <typename K, typename V, class comp = less<K>> using treemap = tree<K, V, comp, rb_tree_tag, tree_order_statistics_node_update>;
// HashSet
#include <ext/pb_ds/assoc_container.hpp>
template <typename T, class Hash> using hashset = gp_hash_table<T, null_type, Hash>;
template <typename K, typename V, class Hash> using hashmap = gp_hash_table<K, V, Hash>;
const ll RANDOM = chrono::high_resolution_clock::now().time_since_epoch().count();
struct chash { ll operator()(ll x) const { return x ^ RANDOM; } };
#endif
// More utilities
int SZ(string &v) { return v.length(); }
template <typename C> int SZ(C &v) { return v.size(); }
template <typename C> void UNIQUE(vector<C> &v) { sort(v.begin(), v.end()); v.resize(unique(v.begin(), v.end()) - v.begin()); }
template <typename T, typename U> void maxa(T &a, U b) { a = max(a, b); }
template <typename T, typename U> void mina(T &a, U b) { a = min(a, b); }
const ll INF = 0x3f3f3f3f, LLINF = 0x3f3f3f3f3f3f3f3f;
#line 3 "fraction.cpp"
template <typename T = int64_t> struct Fraction {
T n, d;
void reduce() {
T gv = __gcd(abs(n), abs(d));
n /= gv; d /= gv;
if (d < 0) {
n *= -1; d *= -1;
}
}
Fraction(T a, T b) : n(a), d(b) { reduce(); }
Fraction(T x) : n(x), d(1) { reduce(); }
Fraction inv() const { return Fraction(d, n); }
Fraction neg() const { return Fraction(-n, d); }
Fraction mul(Fraction f) const { return Fraction(n * f.n, d * f.d); }
Fraction div(Fraction f) const { return mul(f.inv()); }
Fraction add(Fraction f) const { return Fraction(n * f.d + f.n * d, d * f.d); }
Fraction sub(Fraction f) const { return add(f.neg()); }
bool operator==(const Fraction o) const { return n == o.n && d == o.d; }
bool operator!=(const Fraction o) const { return n != o.n || d != o.d; }
bool operator<(const Fraction o) const { return n * o.d < o.n * d; }
bool operator>(const Fraction o) const { return o < *this; }
bool operator<=(const Fraction o) const { return !(o < *this); }
bool operator>=(const Fraction o) const { return !(*this < o); }
};
ostream& operator<<(ostream &out, const Fraction o) {
out << o.n << " / " << o.d;
return out;
}