This documentation is automatically generated by online-judge-tools/verification-helper
#include "graph/2sat.hpp"
#pragma once
#include "../template.hpp"
struct TwoSat {
int N, cord, ccomp;
vector<int> ord, low, instk, stk, comp;
vector<vector<int>> g;
void init(int N0) {
N = N0; cord = ccomp = 0;
g.assign(N*2+1, vector<int>());
ord.assign(N*2+1, 0);
low.assign(N*2+1, 0);
instk.assign(N*2+1, 0);
comp.assign(N*2+1, 0);
stk.clear();
}
void addEdge(int a, int b) {
if (a < 0) a = N-a;
if (b < 0) b = N-b;
g[a].push_back(b);
}
void addOr(int a, int b) {
addEdge(-a, b);
addEdge(-b, a);
}
void tarjan(int c) {
ord[c] = low[c] = ++cord;
instk[c] = true; stk.push_back(c);
for (auto to : g[c]) {
if (!ord[to]) {
tarjan(to);
low[c] = min(low[c], low[to]);
}
else if (instk[to])
low[c] = min(low[c], ord[to]);
}
if (low[c] == ord[c]) {
int u, cc = ++ccomp;
do {
u = stk.back(); stk.pop_back(); instk[u] = false;
comp[u] = cc;
} while (u != c);
}
}
vector<int> solve() {
for (auto i = 1; i <= 2*N; i++)
if (!ord[i])
tarjan(i);
for (auto i = 1; i <= N; i++)
if (comp[i] == comp[i+N])
return vector<int>(N+1, -1);
vector<int> res(N+1);
for (auto i = 1; i <= N; i++)
res[i] = comp[i] < comp[i+N]; // 1 > 0
return res;
}
};
#line 2 "template.hpp"
#include <bits/stdc++.h>
#define DEBUG 1
using namespace std;
// Defines
#define fs first
#define sn second
#define pb push_back
#define eb emplace_back
#define mpr make_pair
#define mtp make_tuple
#define all(x) (x).begin(), (x).end()
// Basic type definitions
#if __cplusplus == 201703L // CPP17 only things
template <typename T> using opt_ref = optional<reference_wrapper<T>>; // for some templates
#endif
using ll = long long; using ull = unsigned long long; using ld = long double;
using pii = pair<int, int>; using pll = pair<long long, long long>;
#ifdef __GNUG__
// PBDS order statistic tree
#include <ext/pb_ds/assoc_container.hpp> // Common file
#include <ext/pb_ds/tree_policy.hpp>
using namespace __gnu_pbds;
template <typename T, class comp = less<T>> using os_tree = tree<T, null_type, comp, rb_tree_tag, tree_order_statistics_node_update>;
template <typename K, typename V, class comp = less<K>> using treemap = tree<K, V, comp, rb_tree_tag, tree_order_statistics_node_update>;
// HashSet
#include <ext/pb_ds/assoc_container.hpp>
template <typename T, class Hash> using hashset = gp_hash_table<T, null_type, Hash>;
template <typename K, typename V, class Hash> using hashmap = gp_hash_table<K, V, Hash>;
const ll RANDOM = chrono::high_resolution_clock::now().time_since_epoch().count();
struct chash { ll operator()(ll x) const { return x ^ RANDOM; } };
#endif
// More utilities
int SZ(string &v) { return v.length(); }
template <typename C> int SZ(C &v) { return v.size(); }
template <typename C> void UNIQUE(vector<C> &v) { sort(v.begin(), v.end()); v.resize(unique(v.begin(), v.end()) - v.begin()); }
template <typename T, typename U> void maxa(T &a, U b) { a = max(a, b); }
template <typename T, typename U> void mina(T &a, U b) { a = min(a, b); }
const ll INF = 0x3f3f3f3f, LLINF = 0x3f3f3f3f3f3f3f3f;
#line 3 "graph/2sat.hpp"
struct TwoSat {
int N, cord, ccomp;
vector<int> ord, low, instk, stk, comp;
vector<vector<int>> g;
void init(int N0) {
N = N0; cord = ccomp = 0;
g.assign(N*2+1, vector<int>());
ord.assign(N*2+1, 0);
low.assign(N*2+1, 0);
instk.assign(N*2+1, 0);
comp.assign(N*2+1, 0);
stk.clear();
}
void addEdge(int a, int b) {
if (a < 0) a = N-a;
if (b < 0) b = N-b;
g[a].push_back(b);
}
void addOr(int a, int b) {
addEdge(-a, b);
addEdge(-b, a);
}
void tarjan(int c) {
ord[c] = low[c] = ++cord;
instk[c] = true; stk.push_back(c);
for (auto to : g[c]) {
if (!ord[to]) {
tarjan(to);
low[c] = min(low[c], low[to]);
}
else if (instk[to])
low[c] = min(low[c], ord[to]);
}
if (low[c] == ord[c]) {
int u, cc = ++ccomp;
do {
u = stk.back(); stk.pop_back(); instk[u] = false;
comp[u] = cc;
} while (u != c);
}
}
vector<int> solve() {
for (auto i = 1; i <= 2*N; i++)
if (!ord[i])
tarjan(i);
for (auto i = 1; i <= N; i++)
if (comp[i] == comp[i+N])
return vector<int>(N+1, -1);
vector<int> res(N+1);
for (auto i = 1; i <= N; i++)
res[i] = comp[i] < comp[i+N]; // 1 > 0
return res;
}
};