This documentation is automatically generated by online-judge-tools/verification-helper
#define PROBLEM "https://judge.yosupo.jp/problem/range_affine_range_sum"
#include "../../template.hpp"
#include "../test_utils.hpp"
#include "../../ds/segment_tree_lazy.hpp"
#include "../../math/mod.hpp"
// A = (ax+b), B = (cx+d)
// c(ax+b)+d = acx + bc + d
using MI = ModInt<int, 998244353>;
using pm = pair<MI, MI>;
struct AffineComp {
using Data = MI;
using Lazy = pm;
const Data vdef = 0;
const Lazy ldef = {1, 0};
Data merge(Data l, Data r) const { return l + r; }
Lazy mergeLazy(Lazy to, Lazy v) const {
auto [a, b] = to;
auto [c, d] = v;
return {a * c, b * c + d};
}
void applyLazy(Data &to, Lazy &v, int l, int r) { to = v.first * to + (r - l + 1) * v.second; }
};
int main() {
fast_io();
int N = readi(), Q = readi();
LazySegmentTree<AffineComp> seg; seg.init(N);
for (auto [i, v] : enumerate(readv<int>(N), 1))
seg.setPoint(i, v);
while (Q--) {
if (readi() == 0) {
int l = readi() + 1, r = readi(), b = readi(), c = readi();
seg.update(l, r, {b, c});
}
else {
int l = readi()+1, r = readi();
print(seg.query(l, r));
}
}
}
#line 1 "tests/ds/segment_tree_lazy.test.cpp"
#define PROBLEM "https://judge.yosupo.jp/problem/range_affine_range_sum"
#line 2 "template.hpp"
#include <bits/stdc++.h>
#define DEBUG 1
using namespace std;
// Defines
#define fs first
#define sn second
#define pb push_back
#define eb emplace_back
#define mpr make_pair
#define mtp make_tuple
#define all(x) (x).begin(), (x).end()
// Basic type definitions
#if __cplusplus == 201703L // CPP17 only things
template <typename T> using opt_ref = optional<reference_wrapper<T>>; // for some templates
#endif
using ll = long long; using ull = unsigned long long; using ld = long double;
using pii = pair<int, int>; using pll = pair<long long, long long>;
#ifdef __GNUG__
// PBDS order statistic tree
#include <ext/pb_ds/assoc_container.hpp> // Common file
#include <ext/pb_ds/tree_policy.hpp>
using namespace __gnu_pbds;
template <typename T, class comp = less<T>> using os_tree = tree<T, null_type, comp, rb_tree_tag, tree_order_statistics_node_update>;
template <typename K, typename V, class comp = less<K>> using treemap = tree<K, V, comp, rb_tree_tag, tree_order_statistics_node_update>;
// HashSet
#include <ext/pb_ds/assoc_container.hpp>
template <typename T, class Hash> using hashset = gp_hash_table<T, null_type, Hash>;
template <typename K, typename V, class Hash> using hashmap = gp_hash_table<K, V, Hash>;
const ll RANDOM = chrono::high_resolution_clock::now().time_since_epoch().count();
struct chash { ll operator()(ll x) const { return x ^ RANDOM; } };
#endif
// More utilities
int SZ(string &v) { return v.length(); }
template <typename C> int SZ(C &v) { return v.size(); }
template <typename C> void UNIQUE(vector<C> &v) { sort(v.begin(), v.end()); v.resize(unique(v.begin(), v.end()) - v.begin()); }
template <typename T, typename U> void maxa(T &a, U b) { a = max(a, b); }
template <typename T, typename U> void mina(T &a, U b) { a = min(a, b); }
const ll INF = 0x3f3f3f3f, LLINF = 0x3f3f3f3f3f3f3f3f;
#line 3 "tests/test_utils.hpp"
// I/O
template <typename T> void print(T v) {
cout << v << '\n';
}
template <typename T, typename... Rest> void print(T v, Rest... vs) {
cout << v << ' ';
print(vs...);
}
void fast_io() {
ios_base::sync_with_stdio(false);
cin.tie(NULL);
}
// Reading operators
template <typename T, typename U> istream& operator>>(istream& in, pair<T, U> &o) {
return in >> o.first >> o.second;
}
// Read helpers
int readi() {
int x; cin >> x;
return x;
}
ll readl() {
ll x; cin >> x;
return x;
}
template <typename T> vector<T> readv(int n) {
vector<T> res(n);
for (auto &x : res) cin >> x;
return res;
}
// Functional stuff
template <typename T> vector<pair<int, T>> enumerate(vector<T> v, int start = 0) {
vector<pair<int, T>> res;
for (auto &x : v)
res.emplace_back(start++, x);
return res;
}
#line 3 "ds/segment_tree_lazy.hpp"
// Example comparator: Range min + Range increment
// In the functions mergeLazy and applyLazy, objects are merged from `v` to `to`. In the function merge, data is merged from left to right
struct Comp {
using Data = int;
using Lazy = int;
const Data vdef = INF;
const Lazy ldef = 0;
Data merge(Data l, Data r) const { return min(l, r); }
Lazy mergeLazy(Lazy to, Lazy v) const { return to + v; }
void applyLazy(Data &to, Lazy &v, int l, int r) { to += v; }
};
#define MID int mid = (l + r) / 2, lhs = i + 1, rhs = i + (mid - l + 1) * 2;
template <class Comp> struct LazySegmentTree {
using Data = typename Comp::Data; using Lazy = typename Comp::Lazy; Comp C;
int N;
vector<Data> seg; vector<Lazy> lazy;
void init(int n0) {
N = n0;
seg.assign(2 * N + 2, C.vdef);
lazy.assign(2 * N + 2, C.ldef);
}
void push(int i, int l, int r) {
if (lazy[i] != C.ldef) {
MID;
C.applyLazy(seg[i], lazy[i], l, r);
if (l != r) {
lazy[lhs] = C.mergeLazy(lazy[lhs], lazy[i]);
lazy[rhs] = C.mergeLazy(lazy[rhs], lazy[i]);
}
lazy[i] = C.ldef;
}
}
Data _query(int ql, int qr, int i, int l, int r) {
if (ql > r || qr < l) return C.vdef;
push(i, l, r);
if (l >= ql && r <= qr) return seg[i];
MID;
return C.merge(_query(ql, qr, lhs, l, mid), _query(ql, qr, rhs, mid + 1, r));
}
Data _update(int ql, int qr, Lazy v, int i, int l, int r) {
push(i, l, r);
if (ql > r || qr < l) return seg[i];
if (l >= ql && r <= qr) {
lazy[i] = v;
push(i, l, r);
return seg[i];
}
MID;
return seg[i] = C.merge(_update(ql, qr, v, lhs, l, mid), _update(ql, qr, v, rhs, mid + 1, r));
}
Data _setPoint(int q, Data v, int i, int l, int r) {
push(i, l, r);
if (q > r || q < l) return seg[i];
if (l >= q && r <= q) return seg[i] = v;
MID;
return seg[i] = C.merge(_setPoint(q, v, lhs, l, mid), _setPoint(q, v, rhs, mid + 1, r));
}
Data query(int ql, int qr) { return _query(ql, qr, 1, 1, N); }
void update(int ql, int qr, Lazy v) { _update(ql, qr, v, 1, 1, N); }
void setPoint(int q, Data v) { _setPoint(q, v, 1, 1, N); }
};
#line 3 "math/eea.hpp"
/*
* ax + by = gcd(a, b)
*
* we know
* bx' + (a%b)y' = gcd(a, b)
*
* bx' + (a-b*(a//b))y' = gcd(a, b)
* bx' + ay' - b*(a//b)y' = gcd(a, b)
* ay' + b(x' - (a//b)y') = gcd(a, b)
*/
template <typename T> T extgcd(T a, T b, T &x, T &y) {
if (b == 0) {
x = 1;
y = 0;
return a;
}
T x0, y0, res = extgcd(b, a%b, x0, y0);
x = y0;
y = x0 - (a / b) * y0;
return res;
}
#line 4 "math/mod.hpp"
// based on Tourist modInt orz
template <typename MD> struct _ModInt {
using T = typename decay<decltype(MD::value)>::type;
static_assert(sizeof(T) >= 4, "size of T must be at least 32 bits");
static_assert(sizeof(T) <= 8, "size of T must be at most 64 bits");
static_assert(is_integral<T>::value, "T must be an integral type");
#ifdef __SIZEOF_INT128__
using mul_t = typename conditional<sizeof(T) <= 4, int64_t, __int128>::type;
#else
using mul_t = int64_t;
static_assert(sizeof(T) <= 4, "int128 not available, cannot use 64-bit size of T");
#endif
constexpr static T mod() { return MD::value; }
template <typename U> static T normalize(const U& x) {
T res = x;
res %= mod();
if (res < 0) res += mod();
return res;
}
T value;
constexpr _ModInt() : value() {}
template <typename U> _ModInt(const U& x) { value = normalize(x); }
const T& operator()() const { return value; }
template <typename U> operator U() const { return static_cast<U>(value); }
// FastPow
template <typename U> static _ModInt pow(_ModInt x, U y) {
_ModInt res(1);
for (; y; y /= 2) {
if (y & 1) res *= x;
x *= x;
}
return res;
}
static _ModInt inv(const _ModInt &x) {
T inv, _; extgcd(x.value, mod(), inv, _);
return _ModInt(inv);
}
// Arithmetic Operators w/ _ModInt
// Assignment operators here
_ModInt& operator+=(const _ModInt &o) { if ((value += o.value) >= mod()) value -= mod(); return *this; }
template <typename U> _ModInt& operator+=(const U &o) { return *this += _ModInt(o); }
_ModInt& operator-=(const _ModInt &o) { if ((value -= o.value) < 0) value += mod(); return *this; }
template <typename U> _ModInt& operator-=(const U &o) { return *this -= _ModInt(o); }
_ModInt& operator++() { return *this += 1; }
_ModInt operator++(int) { _ModInt res(*this); *this += 1; return res; }
_ModInt& operator--() { return *this -= 1; }
_ModInt operator--(int) { _ModInt res(*this); *this -= 1; return res; }
_ModInt& operator*=(const _ModInt &o) { value = (mul_t)value * o.value % mod(); if (value < 0) value += mod(); return *this; } // make sure cast to mul_t!!!
template <typename U> _ModInt& operator*=(const U &o) { return *this *= _ModInt(o); }
_ModInt& operator/=(const _ModInt &o) { return *this *= inv(o.value); }
template <typename U> _ModInt& operator/=(const U &o) { return *this /= _ModInt(o); }
_ModInt operator-() const { return _ModInt(value); }
// Other Operators
T& operator()() { return value; }
// Definitions of some operators
};
// Binary operators
#define OP_CMP(op) template <typename T> bool operator op(const _ModInt<T> &lhs, const _ModInt<T> &rhs) { return lhs.value op rhs.value; } \
template <typename T, typename U> bool operator op(const _ModInt<T> &lhs, U rhs) { return lhs op _ModInt<T>(rhs); } \
template <typename T, typename U> bool operator op(U lhs, const _ModInt<T> &rhs) { return _ModInt<T>(lhs) op rhs; }
#define OP_ARI(op) template <typename T> _ModInt<T> operator op(const _ModInt<T> &lhs, const _ModInt<T> &rhs) { return _ModInt<T>(lhs) op##= rhs; } \
template <typename T, typename U> _ModInt<T> operator op(U lhs, const _ModInt<T> &rhs) { return _ModInt<T>(lhs) op##= rhs; } \
template <typename T, typename U> _ModInt<T> operator op(const _ModInt<T> &lhs, U rhs) { return _ModInt<T>(lhs) op##= rhs; }
OP_CMP(==) OP_CMP(!=) OP_CMP(<) OP_CMP(>) OP_CMP(<=) OP_CMP(>=)
OP_ARI(+) OP_ARI(-) OP_ARI(*) OP_ARI(/)
#undef OP_CMP
#undef OP_ARI
template <typename T> istream& operator>>(istream& in, _ModInt<T> &o) { return in >> o(); }
template <typename T> ostream& operator<<(ostream& out, _ModInt<T> &o) { return out << o(); }
// Definitions
template <typename T, T mod> using ModInt = _ModInt<integral_constant<T, mod>>;
template <typename T> struct VarMod {
static T value;
static void read(istream& in) { in >> value; }
static void set(T v0) { value = v0; }
};
template <typename T> using VarModInt = _ModInt<VarMod<T>>;
#line 6 "tests/ds/segment_tree_lazy.test.cpp"
// A = (ax+b), B = (cx+d)
// c(ax+b)+d = acx + bc + d
using MI = ModInt<int, 998244353>;
using pm = pair<MI, MI>;
struct AffineComp {
using Data = MI;
using Lazy = pm;
const Data vdef = 0;
const Lazy ldef = {1, 0};
Data merge(Data l, Data r) const { return l + r; }
Lazy mergeLazy(Lazy to, Lazy v) const {
auto [a, b] = to;
auto [c, d] = v;
return {a * c, b * c + d};
}
void applyLazy(Data &to, Lazy &v, int l, int r) { to = v.first * to + (r - l + 1) * v.second; }
};
int main() {
fast_io();
int N = readi(), Q = readi();
LazySegmentTree<AffineComp> seg; seg.init(N);
for (auto [i, v] : enumerate(readv<int>(N), 1))
seg.setPoint(i, v);
while (Q--) {
if (readi() == 0) {
int l = readi() + 1, r = readi(), b = readi(), c = readi();
seg.update(l, r, {b, c});
}
else {
int l = readi()+1, r = readi();
print(seg.query(l, r));
}
}
}